Service Functionality
Table of Contents

Introduction ................................................................. Pg 6
The Service Item Entity .................................................. Pg 6-10
Engineering ................................................................. Pg 7
Estimating ................................................................. Pg 7
Bid Process Management ............................................... Pg 7
Contract Management ................................................... Pg 7
Project Definition ......................................................... Pg 8
Project Management Interface ........................................ Pg 8
Project Accounting ....................................................... Pg 8
Project Resource Planning ............................................. Pg 9
Engineering Change ....................................................... Pg 9
Service Work Orders ..................................................... Pg 9
Installation Management ............................................... Pg 9
After Market Service. ....................................................... Pg 11-18
Introduction ................................................................. Pg 11
eService ................................................................. Pg 11-15
Service & Repair (SVS) and Field Service (FS) ....................... Pg 16-18
Introduction ................................................................. Pg 16
Service & Repair (SVS) ................................................... Pg 16
Field Service (FS) ......................................................... Pg 17
Service Functionality

Introduction
Any organization that supplies a product is aware of the concept of service. That is, if your organization provides a product to the market, your organization—or someone designated by your organization—is ultimately responsible for supporting that product. This is particularly relevant to manufacturing organizations.

The extent of service provided by a manufacturing organization is generally a function of the product that is manufactured. If the product is sold through a retailer, it is usually serviced by way of the customer returning the product to the manufacturer or a predesignated service provider. For large products, such as refrigerators, however, a ‘service agent’ is scheduled for a ‘house call.’ At the other extreme, the service provided by manufacturers of Capital Equipment, such as elevators or semi-conductor equipment, frequently comprises an organization in and of itself.

Glovia recognizes the need for Service functionality that is consistent and integrated with that used to manufacture a product. For this reason, Glovia includes functionality to identify, plan, and manage Service from the start of a customer order through the manufacturing, shipment, installation, and maintenance of a product. It does this by way of logic provided throughout the relevant applications to recognize the entity ‘Service Item.’

This paper speaks to the subject in two contexts:
- the Service Item entity, including a short review of the applications within GLOVIA G2 that allow for Service Item planning and execution, and
- existing applications within GLOVIA G2 specifically designed to address the aftermarket service functions of an organization, that is, eService, Service and Repair, and Field Service.

The Service Item Entity
Service Item functionality enables the user to identify and manage a Service Item being delivered with the same rigor and precision currently applied to Material Items being manufactured.

In the context of Glovia functionality, a Service Item is defined as the ‘activity’ (action) required to enable a shipped item to function correctly. The best example of a Service Item is Installation, the activity of installing the product that was shipped. Other examples of Service Items include Design, Training, Repair, and so on.

In many instances a Service item will look like a project deliverable in that it’s routing will appear to be a list of tasks. So why make the distinction? Why not just identify the entity, the service, as such?

Historically, services were not considered a product in and of themselves but were treated as a project required to deliver the manufactured product. Services were managed using a project management tool while the materials required to manufacture the product and deliver the service were managed with a MRP tool, with little thought given to the manufacture and support of the product. While it sounds fairly straightforward, predicting and managing all of the variables that influence that objective are a challenge.

Consider again the example of Installation of the product. Given the two different planning tools left the user to manually coordinate the timing and delivery of the product at the customer site, with the timing of the installation engineer along with the materials needed by that engineer to actually do the installation.
By recognizing Installation as a service item, Glovia enables the item to be planned and linked to the product to simultaneously deliver both the customer site, thereby preventing possible damage to the product and waste of the engineer's time.

To allow for this capability, Glovia provides Service Item functionality in all relevant applications. A brief review of those applications, and the Service Item functionality included therein, follows.

**Engineering** – The Service Item is initiated in the Engineering Service Item Catalog. All data attributes of a material item that are relevant to a Service Item are included. These attributes include the item's BOM, which, for a Service Item, is always single level, and Routing, the operations required to deliver the Service. Cost (standard or actual) is also included as are Planning Data attributes, such as Planning Method and Leadtime, and Standards and Procedures Data, such as Unit of Measure - each, hours, days, and so on.

**Estimating** – Service Items can be considered a valuable part of an Estimating Worksheet. That is, frequently when developing an estimate for a Contract Quote, or Contract, the Services (Service Items) to be provided as part of that Contract Quote/Contract will comprise a significant cost and should, therefore, be considered in the total estimated price. Excellent examples of this are Design and Installation of a new product.

**Bid Process Management** – The Contract Quote should list all required Service Items to be delivered as part of the Contract being quoted, for example, Design and Installation. Unlike Material Item requirements, a Service Item requirement does not have a Due Date but has a Start Date and an End Date. Just like a Material Item requirement, however, a Service item requirement can have a Supply Order Peg and a Project Link. Since Contract Quotes are not planned, a Supply Order for a Service Item can be manually created and pegged to a Service Item requirement (Design) in the Contract Quote. Pricing for a Service Item is similar to that of a Material Item in that it can have a List Price or a Manual Price.

**Contract Management** – On award of the Contract, the Contract Quote is converted, along with all data from that Contract Quote. All pegs that were manually created in the Contract Quote are converted to the Contract and are seen by the planning tool, which for Service Items is Project Resource Planning. Pegged Supply Orders for Service Items not manually pegged are created when the Contract is seen by PRP as a demand. Likewise, Project Links are converted or can be added at this time. Although most contracts contain material item requirements and the service items required to make them function correctly, it is possible to have a contract with requirements for Service Items, such as Design, Install, and Train, with no requirements for Material Items. The following provides a visual of some of this integration.
Project Definition – Although one would no longer be planning the Service item using a project management tool, Projects still play a significant role in the efficient operations of any manufacturing environment. Project Definition is primarily a tool for structuring how requirements will be met. As seen in the above graphic, Project Definition has the capability to reference between Project Tasks and the required Contract Service and Material line item to which it is linked. The result is that the Project and Project Task are treated as attributes of the Contract Service and Material line items. Thus, Contract Management knows the Project Task to which this line item data is to be referenced. Project Resource Planning can take advantage of these links by establishing and reconciling Project Task dates and Demand/Supply Order Dates.

Project Management Interface - Functionality provided by the PMI Application interfaced to Microsoft Project allows for the complete scheduling and networking of Service Items and their tasks through predecessor and successor relationships. It does this by way of the link between the Contract Service Item Requirement and the Project Task to which that Service item is linked. This, combined with the materials management principles provided in Project Resource Planning, allows for greater visibility to past, present, and future costs and schedules, as well as impact analysis for past and potential changes.

Project Accounting – Accurate Estimation of the cost of a Service Item (Design) for a Contract Quote is imperative to meeting profit margins. It is also significant in the instance of charge back for the cost of Design to the customer. Project Accounting provides actual costs from previous contracts that were linked to a Project. Any transaction performed that is linked to a Project Task will post to Project Accounting, thus relating all costs of Material Items and Service Items linked to that Project Task to be accrued. Incorporation of this information into new contracts is where true value-add is realized.
Project Resource Planning – Before generating any Replenishment Orders, the objective is to get the Planned dates for the Contract Material and Service Items synchronized with the Project Tasks to avoid the need for a significant number of changes to planned and released orders. But changes always occur. These changes may result in conflicts between the Contract dates for the Service and/or Material lines and the Project Task dates. One of the primary benefits to be obtained from Project Resource Planning is the ability to efficiently and cost-effectively Plan and Re-Plan the Material Item and Service Item requirements of contracts, projects, and tasks. Project Resource Planning provides facilities to perform impact analysis and to reconcile those dates when change does occur.

Engineering Change - In the Engineer-To-Order environment, one of the Service Items that is generally part of the Contract is Engineering Services. Engineering Change allows the user to monitor and control the lifecycle of a Service Item, such as Design Engineering or Installation Engineering, just as it does the lifecycle of a Material Item.

Of particular importance is the ability for Engineering Change to view the Installation Management Site Register in the context of engineering changes. The visibility to see the product as it currently exists in the Customer’s Site Register is of utmost importance in the instance of a mandatory engineering change.

Service Orders - A Service Item, for example, Training, is “delivered” as opposed to shipped, but the methods for coordinating the activities in the “delivery” of a Service Item can be thought of in the same terms as the manufacture of a material item. That is, in order to fill a Service Item requirement, either inventory or a supply order is required. Because inventory cannot exist for a Service Item, a supply order is the means to replenishment. The Service Order Application provides the functionality to process and manage Service Items by way of Service Work Orders (SWOs) and Service Purchase Orders (SPOs).

A Service Item WO (SWO) enables the user to deliver a service. The SWO is similar to a material item WO in that a SWO will have a SWO Bill of Material and a Routing. Since the objective of a SWO is not materials, the SWO BOM can be thought of as containing items needed to aid in the delivery of the item.

A Service Item PO (SPO) is similar to a material item PO with the exception of the receipt of material. It is important to note, however, that there is a receipt of sorts for a SPO that enables the user to “receive against” that SPO. For example, the customer buys five Education Courses, one of which has been completed. The completion of that course can be thought of as a receipt. This receipt provides to the user the capability to identify percent complete, which can be used by Project Definition for Project Percent Complete, as well as by Contract Management for Progress Billing.

Installation Management - Installation Management enables the user to plan and manage the materials and services required to perform the Service Item “Install,” plan for and manage the resources required to perform the installation, and manage the actual installation itself. It does this by way of an Installation Order. Installation Management can be thought of as a “Specialty” Service. A reiteration of the previously viewed graphic reviews this integration. An excellent example of an installed product is an elevator. The customer Site Register for an installed item maintains the As-Installed and As-Maintained Bill of Material.
The concepts surrounding the management of service items are not new. The challenge is to enhance the way we and the system view items, to build on our knowledge that a Material Item is an item we procure or manufacture and a Service Item is an item we deliver.
After Market Service

Introduction
The following graphic reflects the flow of Engineer-to-Order (ETO) products throughout Glovia. Glovia’s After Market Service capabilities include the following applications:

- eService
- Service and Repair
- Field Service

The functionality in each of these applications is discussed in the following sections.

eService

eService is a tool designed by OEMs for OEMs. That is, individuals who apply their knowledge to the required activities as part of their daily operating practices validated the functionality incorporated into this application.

The primary user of eService is the manufacturer for which Service is a significant part of their business. For example, the manufacturer of Capital Equipment has Field Service Engineers traveling to customer sites to perform service on their products.

The primary business issue addressed by eService is the need for visibility of access to the product and its configuration throughout its lifecycle. At the same time, the need for visibility of total lifecycle cost is also met by eService. And, while the Installation Management Site Register defines the As-Shipped (As-Installed) BOM, eService provides the tool required to manage the As-Maintained BOM at the customer site.
In addition, Glovia customers are anxious to take advantage of new technology, thereby enabling them to improve their efficiency and reduce their operating costs. Web access addresses both of those needs.

Shown differently, the following provides more of the detail and integration of the functionality available in eService.

To make the use of this product efficient, Glovia put some of the functionality in standard GUI format. At the same time, some functionality had to be made accessible from remote locations by way of the Internet. The specific breakdown was based on primary user. Functions performed by office staff, including development of the Contract and Invoicing of the Customer, are done in standard GUI format to be consistent with all other functionality being used by those individuals. However, execution of the actual field service order, as well as access to the Customer Site Register and company inventory functions, are performed by the FSEs and thus need to be accessible through the web and by way of smartphones, iPads and other tools enabling mobility. This capability is made possible through the Customer Portal. Queries are provided to enable access to all relevant information, regardless of where the functions are performed.

A summary of the functionality of the eService Application includes the following:

- Part-GUI format, part Web Access functionality
- Service Items, as defined in the first section of this document, are recognized entities
- The Field Service Agreement (FSA) is the Contract to provide Service
  - FSA Quote does not require additional conversion function
  - Warranty and Level of Service are recognized at the End Item Level
- The FSA Service Charge, which is the price charged to the customer to provide service, can be managed using Periodic Billing (monthly, quarterly, annually)
- The Field Service Engineer (FSE) is the resource who performs the service
- The Field Service Order (FSO) is the supply order/reporting mechanism on which the FSE reports the service delivered.
Project Functionality links the FSA and FSO to Project Definition’s Project and Task fields and logic, with associated Project Accounting visibility. This linking is done in a manner that is consistent with all other Project Links in Glovia. Benefits to your business resulting from this capability include:

- Linking the FSA to the same project as that of the Sales Contract enables the full product lifecycle cost to be determined – from initial sales through maintenance.
- FSOs for the service performed on that product can be charged to the project by picking up the Project and Task from the FSA to which the FSO is linked.
  - If no FSA exists, the FSE can be prompted to enter a Project and Task to which the work should be ‘charged.’

This will enable the user to include all associated costs and roll-up, by way of PA, to a single Project thus yielding an inclusive product lifecycle cost.

- Alternately, a different project can be identified for the FSA and the two combined for full product lifecycle cost by way of the Program Cost Accounting application.

The eService process is initiated with the creation of the Field Service Agreement (FSA), which is the Contract to provide Service. The FSA is written to document Warranty and Level of Service, where Level of Service addresses what is covered versus not covered after the warranty expires. Coverage can be identified to include all or none of the possibilities: materials, labor, unique services, additional charges, and so on. This is managed by beginning and ending effectivity dates and user-established account codes. The Field Service Engineer always has access to a Customer FSA to verify coverage and status.

Because service is provided worldwide by resources from other company organizations it was necessary to ensure that an end item at any customer site—worldwide—would have a unique end item ID. The Customer Machine File, where Machine is the customer/site/end item ID, is the system-wide file that enables this uniqueness.

FSA Lines with consistent Periodic Billing can be combined and triggered by a Billing Group Code that is established in a user-defined table. In the same way, FSEs are established with Labor Bill Codes to enable labor prices to be established by code, thus enhancing speed and accuracy of data entry and reducing response time to the customer.

Just as execution of a FSO is not dependent on the existence of a FSA, neither is execution of a FSO dependent on the system knowing that a call for service has been received. Rather, eService is designed to allow the FSE to be entirely flexible when executing an FSO. This is because the priority is given to the customer and the FSEs performing the service necessary to getting that customer’s machine, or equipment, in working order. This is most obvious in the instance of a line going down resulting in loss of productivity. Thus the FSE need not report the service (create the FSO) until after the service has been completed.

Given that flexibility, it is necessary to provide a tool with which the FSE can easily communicate his planned as well as current direct and indirect hours. Glovia provides this communication tool by way of a web-based FSE Calendar in which the FSE can log his indirect time and planned direct time. Actual direct time, that is, time spent at a customer site delivering service to that customer’s product, is electronically maintained at execution of a FSO. A hyperlink is included for Direct Hours to link directly to the supporting FSO(s).
Additional benefits to your business enabled with eService include:

- Tracking of FSE Indirect Time, for example, preparation for a customer visit
- FSE predefined access to company inventory locations, for example, warehouses, enabling the FSEs to deliver the required service(s) without undue waiting for parts
- Although override is available, design of eService was based on the FSEs not needing to know FSA number, prices, accounting codes, and so on. The FSO is designed with the primary purpose of allowing the FSE to report material movement and service performed
- All links back to a supporting FSA are maintained by GLOVIA G2. If no FSA exists, the FSO is priced based on time and materials.

The reader is reminded that the Customer Site Register contains the As-Maintained BOM of the end item product that was shipped to that customer. It is important to note that, since the Customer Site Register was established when the end item Installation Order was completed, GLOVIA G2 Engineering Change will see that Site Register in the instance of any change that impacts the structure in that Site Register. This is imperative to the maintenance of that end item, particularly in the instance of a mandatory change.

Material Items can be Added to or Removed from the Customer Site Register. Material items can also be Replaced in the Customer Site Register. Replacement is an interactive process. That is, when establishing a new item in Engineering, the engineer identifies if that item is a FRU. Items designated as Field Replaceable Units (FRUs) can be Replaced in the Site Register by the FSE. In other words, the FRU defines where in the structure a replacement can be made. This information is available to the FSE but defaults from Engineering so that it need not be maintained by the FSE.

When the FSE replaces an item, he pulls that item from the Customer Site Register. Since the item is being replaced, as opposed to its being removed, it is assumed to be 'broken,' that is, the item is now a non-functional item.

In Engineering, the engineer has defined a ‘Broken Item ID’ for this item. The engineer has also defined a ‘Repaired Item ID’ for the item. This provides for continuity of, yet enables distinction between, the item in its ‘new’ state versus its ‘used’ state. Although this process is optional, that is, the user may choose to identify B_Repaired as B and not distinguish between new and used items, this process and re-ID enables the system to distinguish between item B, the new item, and item B_Repaired, the used (repaired) item. Thus, cost and price data remain associated with the correct item ID.

As a summary to eService and an introduction the final section on Service & Repair and Field Service, the following shows the integration of the three After Market Service applications and their interface to the Site Register.
**Site Register:**
- Represents Customers As-Installed and As-Maintained Product
- Multi-Level Structure
- Includes Serialized and Lot Controlled Items
- Maintained for Installed, Serviced, Repaired and Replaced Items

**eService:**
- Service done at Customer Site
- Repair, Replace, Add and Delete items in the Site Register
- Field Service Agreement (FSA)
- Field Service Order (FSO)
- Recognizes Material and Service Items plus Expenses and Labor
- Field Service Engineer (FSE)
- Time and Expense Reporting
- Direct and Indirect Time / Billable and Non-Billable
- Field Replaceable Unit (FRU)
- Linked to Project
- New versus Used Item Id

**Field Service:**
- Call Logging
- Service Order
- Diagnostic Scripting
- Q & A
- Field Service Engineer (FSE)
- Detail (skills and availability)
- FSE Accountability
- Resource Scheduling

**Service and Repair:**
- Repair Service is done in-house
- Service Contract
- Contract Renewal Logic
- Penalties Logic
- Consumption Logic
- Customer Inventory Accountability
- Service Order
Service & Repair and Field Service

Introduction
The final section of this document reviews the functionality available in the Glovia Service & Repair and Field Service Applications. Both of the upcoming sub-sections highlight similarities to and differences from eService, the most significant of which is that eService recognizes both material and service items while Service & Repair and Field Service focus on material items.

Service & Repair
The Service & Repair Application is almost entirely user-defined. That is, Tables are established based on the level of detail and control that the using organization wants to implement.

Forty-six unique tables exist in Service & Repair to aid the user in defining the level of detail to which he wants to operate. The Service & Repair Service Order is created to ‘service’ (repair) a Material Item. The Service Order is executed using the standard glovia.com Work Order functionality, but that execution is managed by way of one of the most important Service & Repair Tables, the Status and Consequences Table.

The primary objective of the Service & Repair Application is to receive an item ‘in-house’ from a customer, repair that item, and then return that item to the customer. In this context, in-house could mean the manufacturing facility or it could mean a company owned/sponsored service center. The Status and Consequences Table acts as a list of things that must be done on receipt of a customer item. It can be considered an interactive function that, on reply to a specific question, triggers specific functionality to be processed.

One of the significant differences between the Service & Repair / Field Service Applications and the eService Application is that eService enables use of Service Items, such as Repair, Train, and so on, while Service & Repair and Field Service refer only to Material Items, primarily, the item(s) being repaired. This is part of the justification for the extensive number of tables. Whereas a Service Item can have a unique Item ID and Routing established to identify the operations to be performed in different instances, Service & Repair manages this by way of the Status and Consequences Table.

Service & Repair can also be applied to the repair of material items at a customer site. Similar to eService, Service & Repair works against the Site Register. However, the Service & Repair Service Contract is designed to list specific items to be repaired at the Site as opposed to the entire Site Register being inclusive under the end item (Machine) ID. This is because the ‘type’ of product is anticipated to be different. It does not, however, mean that the Service & Repair product type cannot be a piece of capital equipment. Nor does it mean that the Service & Repair Service Contract cannot be negotiated at the end item level.

For example, assume that an organization has five photocopy machines installed by the same vendor. When service is required, the service engineer is scheduled to make the service call. However, after checking the machine, the service engineer finds that the ink cartridge is not properly in place. While he is at the customer site, he is asked to check the other four machines to verify that they are in working order; that done, the service engineer completes the call. No parts are needed but labor is charged for the service call. On his return to his office, he enters the service order data.

As can be seen from this example, the most obvious difference between Service & Repair and eService is that the Service & Repair service engineer does not have access by way of the Internet. All functions in Service & Repair
remain in GUI format. However, there are some unique features in Service & Repair that make this application a powerful tool in the right environment. These features include the following:

**Consumption** – in which the Service Contract is negotiated for 50 hours of service from a beginning to an ending effectivity. In our example above, assume that the service call lasted 2 hours. This leaves the customer with 48 more hours of service before either extending the Service Contract or paying for the service call.

**Penalties** – negotiated into the Service Contract. Penalties are established based on the service vendor’s experience of the time required to make a service call or fix a problem. The amount of time that the customer has agreed to should also be provided. Penalties function such that, when a service call is initiated, a clock mechanism within GLOVIA G2 is ‘turned on’ and continues to run until the call is completed. The mechanism can be set up to trigger a warning when the allotted time is almost gone. When the allotted time has passed, GLOVIA G2 will determine the penalty to be incurred and honor that penalty in the next customer billing.

**Contract Renewal Notice** – a tool with which the GLOVIA G2 user, the provider of the service, can inform a customer of the pending expiration of a Service Contract. This puts the initiative with the vendor as opposed to his relying on the customer to pursue a new contract or an extension to an existing contract.

**Representative Item** – literally, an item with attributes—BOM, Routing, standard cost and service charges—that are sufficiently similar to the item that is to be repaired, that, when the user creates a Service & Repair Service Order for an item, the WO ‘profile’ of the identified Representative Item is established.

To reiterate, Service & Repair is designed to primarily address repairs at sites other than the customer site. Service & Repair works in conjunction with Field Service to address the customer site calls.

**Field Service**
The GLOVIA G2 Field Service Application works in conjunction with the Service and Repair Application. Whereas the Service & Repair Application can be thought of as the primary manager of repair work done ‘in-house,’ the Field Service Application supplies the functionality to identify and manage resources to perform the repair at designated service locations.

While some duplication of functionality exists, for example, logging a customer call, the approach taken to that functionality is significantly different in each application. In Field Service, for example, the customer call is logged by way of a workbench that enables the user to perform the activity more efficiently.

**The Field Service Workbench** allows the user to
- Log a new customer call
- Access previous customer calls
- Apply diagnostic scripts to aid immediate assistance to the customer
- Create and maintain service orders
- Allocate resources to a customer call
- Track and manage resource schedules
The Field Service Application is also a table-driven application. Nineteen tables are introduced, most of which establish Resources and Resource Relationships. In addition, many of the tables that were established in Service & Repair can be applied in Field Service.

The Resource is the primary entity in the Field Service Application. Resources can be defined as individual Engineers, Engineering Teams, Service Providers, and Vehicles. Relationships are then established between these resources. For example, an Engineer can be defined as a member of an Engineering Team.

The primary objective of the Field Service Application is scheduling the correct resource for a specific customer service call. This is enabled by way of a Resource Working Calendar, in which any number of possible calendars can be created by resources to depict their particular work schedules. This Calendar also provides for the notification of scheduled holidays, planned vacations, and so on.

On initiating the allocation of a resource to a service order, the user can validate availability and view conflicts from the same function. Thus, if the resource of choice is not available, the user can determine what must be changed.

To aid the user in determining the resource of choice, skill and ability data can be entered for each resource on individual tables. This data identifies who is qualified to work the different types of service calls. This skill and ability data, combined with specific product and service codes, results in a tool that enables GLOVIA G2 to recommend precisely the correct resource to allocate to a service order.

Diagnostic Scripts and Q & A prompting are additional key features of the Field Service Application. The former is designed in if/then format with path selected based on response. Scripts are developed by Service Providers who know the questions to ask and the expected outcome of each variable. This tool is a significant aid to the less experienced Service Provider when working a service call.

The Question and Answer Session is a different view because it is based on questions to ask the customer while in the process of logging that customer’s call. This session frequently enables the call-taker to help customers help themselves, thereby saving the time and expense of a service call. At a minimum, it enables the questioner to get a sufficiently clear understanding of the problem to determine a ‘Diagnostic Code’ that allows the Service Provider to properly prepare for the service call.

Service of a product is not optional. From smartphones to elevators, the product must be maintained. To truly know the cost of your product, the cost of that maintenance must be known. Further, to protect your bottom lines, that cost must be incorporated into the price you quote for that product. GLOVIA G2 enables this from point of sale through after market service.
International Headquarters
Fujitsu Glovia, Inc.
200 Continental Blvd., 3rd Floor
El Segundo, CA 90245 U.S.A.
Toll Free: (800) 223-3799
Phone: (310) 563-7000
Fax: (310) 563-7300
www.glovia.com

EMEA
Fujitsu Glovia B.V.
Gebouw “De Spoortoren”
Fellenoord 350
5611 ZJ Eindhoven
The Netherlands
Phone: +31 (0) 40-2655355
Fax: +31 (0) 40-2451444

Japan/Asia
Fujitsu Limited
C-5F, Fujitsu Solution Square
17-25 Shin Kamata, 1-Chome
Ota-Ku, Tokyo 144-8588 Japan
Phone: +81 (3) 3730-3145

United Kingdom
Fujitsu Glovia UK Ltd.
960 Capability Green Luton
Bedfordshire LU1 3PE
United Kingdom
Phone: +44 (0) 1582-635070
Fax: +44 (0) 1582-635270